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We examined differences in cerebral blood flow (CBF) measured by Arterial Spin Labeled perfusion MRI
(ASL MRI) across the continuum from cognitively normal (CN) older adults to mild Alzheimer's Disease
(AD) using data from the multi-site Alzheimer's Disease Neuroimaging Initiative (ADNI). Measures of
CBF, in a predetermined set of regions (meta-ROI), and hippocampal volume were compared between CN
(n = 47), patients with early and late Mild Cognitive Impairment [EMCI (n = 32), LMCI (n = 35)], and
AD (n = 15). Associations between these measures and disease severity, assessed by Clinical Dementia
Rating scale sum of boxes (CDR SB), were also assessed. Mean meta-ROI CBF was associated with group status
and significant hypoperfusion was observed in LMCI and AD relative to CN. Hippocampal volume was asso-
ciated with group status, but only AD patients had significantly smaller volumes than the CN. When examin-
ing the relationship between these measures and disease severity, both were significantly associated with
CDR SB and appeared to provide independent prediction of status. In light of the tight link between CBF
and metabolism, ASL MRI represents a promising functional biomarker for early diagnosis and disease track-
ing in AD and this study is the first to demonstrate the feasibility in a multi-site context in this population.
Combining functional and structural measures, which can be acquired in the same scanning session, appears
to provide additional information about disease severity relative to either measure alone.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Alzheimer's disease (AD) is associated with alterations in regional
cerebral blood flow (CBF) that overlap with well-described abnor-
malities in cerebral metabolism measured by 18F-fluorodeoxyglucose
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positron emission tomography (FDG PET) (Chen et al., 2011; Ishii
et al., 1997; Jagust et al., 2001; Johnson et al., 1998), consistent with
the generally tight link between CBF and brain metabolism (Baron
et al., 1982; Fox and Raichle, 1986). While CBF has traditionally
been measured in the clinical setting using radioactive tracers and
nuclear medicine techniques, arterial spin labeled (ASL) perfusion
MRI offers a non-invasive approach to CBF measurement (Detre et
al., 1992) that can be obtained in conjunction with structural MRI
scanning. ASL MRI utilizes magnetically labeled blood water as an
endogenous tracer for quantification of brain perfusion, and does not
require injections or exposure to ionizing radiation (Detre et al., 2009,
2012).

Over the last several years, ASL MRI has been applied to prodromal
and clinical AD patient cohorts, displaying sensitivity to early disease
stages (Alexopoulos et al., 2012; Alsop et al., 2000, 2010; Chao et al.,
2009, 2010; Dai et al., 2009; Hu et al., 2010; Johnson et al., 2005;
Wolk and Detre, 2012; Xu et al., 2007; Yoshiura et al., 2009). When
directly compared, there appears to be a high degree of concordance
between ASL MRI and both FDG PET (Chen et al., 2011; Musiek et al.,
2012) and O15 PET (Xu et al., 2010). FDG PET is considered a
served.
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particularly useful ‘neurodegenerative’ biomarker sensitive to the
early functional downstream effects of AD-related pathology (Jack
et al., 2010) and complementary to measures that reflect the molecu-
lar pathology of AD, such as amyloid imaging. FDG PET has been in-
corporated into recently proposed criteria of prodromal and clinical
AD (Albert et al., 2011; McKhann et al., 2011) and provides a potential
outcome measure for evidence of treatment effects in clinical trials of
these populations (K. Chen et al., 2010; Jack et al., 2010). The avail-
ability of an MRI-based neurodegenerative biomarker analogous to
FDG PET would be desirable due to greater accessibility and lower
cost of MRI relative to PET, while the lack of ionizing radiation expo-
sure is a safety benefit, particularly for longitudinal studies. ASL MRI
can also be obtained concomitantly with structural MRI, which also
provides a valuable biomarker of neurodegeneration (Jack et al.,
2010).

All prior works with ASL MRI in AD populations have been
performed at a single site, often with idiosyncratic research-based
sequences, and few studies in even healthy cohorts have involved
multiple sites (Binnewijzend et al., 2012; Okonkwo et al., 2013;
Petersen et al., 2010). However, for ASL MRI to be realized as a valu-
able tool for clinical research, it must be validated in a multi-site
setting. The Alzheimer's Disease Neuroimaging Initiative 2 (ADNI 2)
includes a sub-study of ASL MRI for participants scanned on the
Siemens 3T MRI platform (~1/3 of enrolled subjects) using a commer-
cial ASL sequence [pulsed ASL; PICORE-Q2TIPS (Luh et al., 1999; Wong
et al., 1997)]. This multi-site study allows for the assessment of ASL
MRI sensitivity to disease severity across the spectrum from cognitively
normal adults, early and late mild cognitive impairment (EMCI, LMCI),
and mild AD. In the present study, we examined differences in CBF
across these groups using a composite region of interest (ROI) previously
found to be sensitive to AD-related CBF changes (Chen et al., 2011) and
originally developed for FDG PET data (Landau et al., 2010, 2011). To
provide context, we compared this measure to that of hippocampal
volume, a commonly used AD biomarker in this population. As hippo-
campal volume can be and is obtained during the same scanning ses-
sion as the ASL sequence, we also explored whether these measures
together can provide complementary information that can be used in
tandem to enhance description of disease status.

2. Materials and methods

2.1. Participants

Data used in the preparation of this article were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as
a $60 million, 5-year public private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer's disease (AD). Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California — San Francisco.
ADNI is the result of efforts of many co investigators from a broad
range of academic institutions and private corporations, and subjects
have been recruited from over 50 sites across the U.S. and Canada. The
initial goal of ADNI was to recruit 800 subjects but ADNI has been
followed by ADNI-GO and ADNI-2. To date these three protocols
have recruited over 1500 adults, ages 55 to 90, to participate in the
research, consisting of cognitively normal older individuals, people
with early or late MCI (EMCI or LMCI), and people with early AD.
The follow up duration of each group is specified in the protocols
for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for
ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For
up-to-date information, see www.adni-info.org.

Data for the current manuscript were limited to baseline scans
from ADNI 2 participants in the ASL MRI substudy as of May, 2012.
This cohort included 47 cognitively normal adults [CN; age: 73.1 ±
7.0 yrs (mean ± standard deviation), Mini-Mental Status Examination
(MMSE): 28.9 ± 1.3, 20 males, 27 females], 15 Alzheimer's disease
(AD) patients (age: 75.6 ± 8.8 yrs, MMSE: 22.4 ± 1.6, 11 males, 4
females), 32 EMCI patients (age: 68.9 ± 7.1, MMSE: 28.6 ± 1.3, 18
males, 14 females), and 35 LMCI patients (age: 72.2 ± 7.4, MMSE:
27.5 ± 2.0, 18 males, 17 females). Full inclusion and exclusion criteria
for ADNI are described at www.adni-info.org. In brief, patients with
MCI were classified essentially in the manner described by Petersen
(2004), but were then further divided into an “early” and “late” group
based on performance on the Wechsler Memory Scale–Revised Logical
Memory II (WMS-LM). The EMCI groupwas defined based on scores be-
tween the cutoff of normal and that of the LMCI group. Nine individuals
(4 CN, 1 EMCI, 4 LMCI) were excluded due to poor ASLMRI data quality
(see below) and one CN adult did not have hippocampal volume mea-
sured. Detailed site information and the number of subjects in each
sub-group whose ASL MRI were included or excluded are listed in
Supplementary Table 1.

2.2. Image acquisition

Both high-resolution structural MRI data and resting ASL data
were downloaded. The structural images were acquired using a 3D
MPRAGE T1-weighted sequence with the following parameters:
TR/TE/TI = 2300/2.98/900 ms, 176 sagittal slices, within plane FOV =
256 × 240 mm2, voxel size = 1.1 × 1.1 × 1.2 mm3, flip angle = 9°,
bandwidth = 240 Hz/pix. ASL data were acquired using the Siemens
product PICORE sequence (Wong et al., 1997), which is a pulsed ASL
(PASL) sequence using the Q2TIPs (Luh et al., 1999) technique for
defining the spin bolus. The acquisition parameters were: TR/TE =
3400/12 ms, TI1/TI2 = 700/1900 ms, FOV = 256 mm, 24 sequential
4 mm thick slices with a 25% gap between the adjacent slices, partial
Fourier factor = 6/8, bandwidth = 2368 Hz/pix, and imaging
matrix = 64 × 64. The first volume of the 105 ASL acquisitions was
used as the M0 image.

2.3. Image processing and analysis

Image processing used SPM8 (http://www.fil.ion.ucl.ac.uk/spm),
FSL (http://www.fmrib.ox.ac.uk/fsl/), and an in-house package devel-
oped at University of Pennsylvania for automatic structural segmen-
tation. The mean control image was registered to the high resolution
structural image. Structural images were segmented into gray matter
(GM), white matter (WM), and CSF using the segmentation tool pro-
vided in SPM8, which were projected into the ASL image space based
on the registration correspondence between the mean ASL control
image and the structural image. The projected WM and CSF segments
were then used to extract the mean WM and CSF signal from the ASL
image series.

The Diffeomorphic Anatomical Registration Through Exponential
Lie Algebra (DARTEL) routine (Ashburner, 2007) implemented in
SPM8 was used to generate a local template for all subjects based
on their segmented gray matter and white matter probability maps
and the local template was registered into the MNI standard space
using a linear affine transformation. With these two transforms,
each individual subject's brain was mapped into the MNI space. The
same combined transform was also used to map each subject's
mean CBF map into the MNI space.

http://www.adni-info.org
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http://www.fmrib.ox.ac.uk/fsl/


Table 1
Demographic and Neuropsychological Data.

CN
(n = 44)

EMCI
(n = 31)

LMCI
(n = 30)

AD
(n = 15)

Age 73.0 (7.0) 68.7 (7.2)⁎ 72.3 (7.4) 75.6 (8.8)
Education 16.3 (2.5) 16.6 (2.8) 16.6 (2.9) 15.7 (2.8)
Female:male 26:18 14:17 14:16 4:11⁎

MMSE 29.0 (1.3) 28.6 (1.4) 27.7 (2.0)⁎⁎ 22.4 (1.6)⁎⁎

CDR 0.0 (0.0) 0.5 (0.0) 0.5 (0.0) 0.9 (0.4)
CDR Sum of Boxes .02 (0.1) 1.0 (0.7)⁎⁎ 1.7 (1.0)⁎⁎ 4.9 (1.8)
WMS-LM immediate 14.0 (3.3) 11.1 (2.5)⁎⁎ 7.6 (2.8) ⁎⁎ 3.9 (2.6) ⁎⁎
WMS-LM delayed 13.5 (3.2) 9.0 (1.7)⁎⁎ 4.2 (2.8)⁎⁎ 1.3 (2.2)⁎⁎

AVLT sum of trials 1–5 44.1 (10.4) 44.1 (11.9) 33.9 (11.4)⁎⁎ 21.2 (8.9)⁎⁎

AVLT 5-min delayed
recall

8.1 (3.8) 8.7 (4.5) 5.1 (3.8)⁎⁎ 1.4 (1.5)⁎⁎

AVLT 30-min delayed
recall

6.9 (4.2) 7.4 (5.0) 3.8 (3.8)⁎⁎ 0.6 (1.2)⁎⁎

Trails A (s) 32.6 (11.1) 29.4 (7.7) 41.7 (18.8)⁎ 55.9 (28.8)⁎⁎

Trails B (s) 87.8 (51.8) 73.7 (31.9) 133.8 (86.7)⁎⁎ 181.6 (68.0)⁎⁎

BNT total 28.1 (2.3) 27.5 (2.6) 25.9 (3.4)⁎⁎ 23.3 (4.9)⁎⁎

Category fluency
(animals)

22.4 (6.5) 20.3 (4.1) 16.9 (5.7)⁎⁎ 12.1 (4.9)⁎⁎

Note: Standard deviations are in parentheses.
Abbreviations: CN: cognitive normal subjects; EMCI: early mild cognitive impairment
patients; LMCI: late MCI patients; AD: Alzheimer's Disease; MMSE: Mini–Mental
State Examination; CDR- Clinical Dementia Rating; WMS-LM: Wechsler Memory
Scale–Revised Logical Memory II; AVLT: Auditory Verbal Learning Test; BNT: Boston
Naming Test.
⁎ p b 0.05 compared to the control group.

⁎⁎ p b 0.01 compared to the control group.
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ASL images were preprocessed using the pipeline implemented in
ASLtbx (Wang et al., 2008) (see a scheme of the pipeline in Supplemen-
tary Fig. 1) The first step was motion correction (MoCo) (Wang, 2012)
and denoising. Denoising included spatial smoothing with an isotropic
Gaussian at full-width-at-half-maximum (FWHM) of 4 mm3, temporal
filtering using a high-pass Butterworth filter (cutoff frequency =
0.01 Hz) and temporal nuisance cleaning. The skull was stripped
using the FSL BET tool to generate a brain mask. This mask was then
used to extract the global mean signal timecourse, excluding extracra-
nial voxels. Temporal nuisances including head motion time courses
(3 translations and 3 rotations), the global signal timecourse, the WM
mean signal timecourse, and the CSF mean signal timecourse were
regressed out from ASL image series at each voxel (Wang, 2012). The
next step was pair-wise subtraction and CBF quantification using the
one-compartment model (Buxton et al., 1998) implemented in ASLtbx.
The detailed model parameters can be found be in Wang et al. (2008)
and Cavusoglu et al. (2009).

The resulting CBF time series (52 images) was then cleaned using
an adaptive procedure. Initial outliers were identified using the head
motion time courses and the whole brain CBF time series as described
above (Wang et al., 2008). For adaptive cleaning, the Pearson's corre-
lation between the gray matter voxels of each ASL CBF time point and
the mean of the remaining CBF time series was calculated. Time points
with a correlation coefficient (CC) smaller than 0.15 (p b 1e−6; the
effective degrees of freedom for calculating CC was >1000 for all
subjects) or out of the range of mean ± 2 standard deviation of all
image CCs were identified as new outliers and were excluded. The
same iteration was repeated until no new outliers were identified.
For most of the subjects, the procedure converged with one iteration,
only 3 subjects took 2 iterations to converge. The remaining time
pointswere averaged to generate the final CBF image. A detailed imple-
mentation procedure is illustrated in Supplementary Fig. 2.

Partial volume effect (PVE) correction was performed to correct
CBF at each voxel in the gray matter using a previously described
approach (Du et al., 2006). The PVE corrected CBF map was then reg-
istered into the structural image space using the same registration
transform from the mean ASL control image to the structural image
described above. Mean GM CBF within the PET data-derived meta-
region-of-interest (meta-ROI) previously reported by Landau et al.
(2011) was extracted for all subjects. This meta-ROI consists of
spheres in precuneus, bilateral parietal cortex, and bilateral temporal
cortex. A spherical ROI within the visual cortex was used as a control
for the meta-ROI andmean CBF was extracted from this control ROI as
well. The location of the meta-ROI and visual cortex ROI on the MNI
template can be seen in Supplementary Fig. 3. Average hippocampal
volumes (left and right) were derived from T1-weighted structural
data (Wang et al., 2011) and divided by ICV (GM + WM + CSF) for
normalization.

2.4. Statistical analysis

Group differences in demographic data were determined by χ2

(for frequencies) and 2-sample t-tests. Separate linear regression
analyses were performed with the meta-ROI or hippocampal volume
as the outcome variable and group (4 levels; defined by 3 dummy
variables) as the predictor variable. Age was included as a covariate.
Planned pair-wise comparisons of each group with the CN group were
also performed. Pearson correlation of the meta-ROI and hippocampal
volume with measures of disease severity [i.e. Clinical Dementia Rating
scale sum of boxes (CDR SB; (Morris, 1993)) and theMMSE; (Folstein et
al., 1975)] were calculated. Finally, to determine the degree to which
these measures independently predicted disease severity, a step-wise
regression model was developed in which age and education were
entered as the first step and meta-ROI and hippocampal volume were
entered as the second in a step-wise manner; the default value of
p b 0.05 to enter an independent variable into themodelwas employed.
Statistical analyses were performed using SPSS 20.0 (Chicago, IL) and
SAS version 9.32 (SAS Institute Inc., Cary, North Carolina). All statistical
tests were two-sided. Statistical significance was set at the p b .05
level unless otherwise noted.

3. Results

3.1. Demographic and psychometric data

Demographic and psychometric data of the study population in-
cluded in the ASL MRI analysis are provided in Table 1. EMCI patients
were younger than the other three groups [CN: t(73) = 2.6, p b 0.05;
LMCI: t(59) = 1.9, p b 0.06; AD: t(44) = 2.8, p b 0.01]. Not surpris-
ingly, MMSE was progressively lower in EMCI, LMCI, and AD patients,
respectively, relative to CN adults, but the EMCI group did not sig-
nificantly differ from the CN group [t(73) = 1.4, p > 0.1]. Indeed,
the only cognitive measure that clearly differed between the EMCI
patients and CN adults was the WMS-LM, which, in part, defined cat-
egory membership, and the CDR SB. LMCI and AD patients displayed
significant impairment across domains relative to the CN group, but
for most measures LMCI was within 1 SD of the CN group.

3.2. Data quality and cleaning

Three subjects' ASL images did not cover a sufficient portion of the
brain and were excluded from further analysis. After data cleaning,
ASL MRI data from an additional 6 subjects were excluded due to
extensive non-physiological negative CBF values in gray matter. These
negative CBF regions showed a large standard deviation over time
suggesting instability of spin labeling or hardware instabilities. A total
of 9 subjects' data (~7%) were excluded from the ASL CBF analysis.
Themean and standarddeviation of thenumber of removed timepoints
due to the adaptive data cleaning were 8.1 ± 2.7 (mean ± standard
deviation), 9.0 ± 2.4, 9.8 ± 2.7, and 12.6 ± 6.7, for the HC, EMCI,
LMCI, and AD sub-group, respectively. The number of removed time
points increased with disease severity (from HC to AD) (one-way
ANOVA, p b 0.001). AD patients had more bad time points removed
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thanHC (2-sample t-test, two tailed, t(57) = 3.37, p b 0.001) and EMCI
(2-sample t-test, two tailed, t(44) = 2.54, p b 0.02) and showed a
trend difference compared to LMCI (2-sample t-test, two tailed, t(44) =
1.98, p = 0.054). LMCI had more bad time points removed than
HC (2-sample t-test, two tailed, t(72) = 2.41 p b 0.02). Fig. 1 shows
processed CBF images from 4 representative subjects (one from each
subgroup). Note that the AD patient demonstrated the most visually
obvious hypoperfusion in posterior brain region characteristic of this
diagnosis. These scans came from 3 different scanner sites (LMCI and
AD were from the same site) and, overall, there were no clear differ-
ences in ASL MRI quality across sites. Supplementary Table 1 provides
details on included and excluded scans from each site.
Fig. 2. Cerebral blood flow (CBF), hippocampal volume, and MMSE for each of the four
subgroups. Y-axis units are ml/100 g/min for CBF (black), mm3∗10,000/intracranial
volume for hippocampal volume (white), and 30 points maximum for MMSE (gray).
Error bars reflect ±1 standard error of the mean.
3.3. Group comparisons of CBF in meta-ROI and hippocampal volume

Fig. 2 shows mean CBF of the meta-ROI and hippocampal volume
across the 4 subgroups. CBF gradually decreased in the continuum
from CN adults to patients with AD while only the LMCI and AD
groups displayed smaller hippocampal volume relative to the CN
group in absolute terms. To examine the relationship of CBF with
group status, a regression model was developed with CBF as the out-
come variable, group as the dependent variable, and age as a covari-
ate. Group status was associated with CBF [F(3,115) = 5.1, p b 0.01]
and the overall model was significant [F(4,115) = 3.85, p b 0.01].
When comparing the patient groups to the CN adults, we found that
patients with AD [t(118) = 3.7, p b 0.001, Cohen's d = 1.09] and
LMCI [t(118) = 2.9, p b 0.05, Cohen's d = 0.58] displayed signifi-
cantly reduced CBF, but this difference did not reach significance
in the EMCI group [t(118) = 1.1, p > 0.1, Cohen's d = 0.27]. Note
that no group differences were found when using CBF of the visual
cortex control ROI (p's > 0.15).

The same model with hippocampal volume as the outcome also
revealed a significant effect of group [F(3,123) = 6.7, p b 0.001;
model: F(4,123) = 9.5, p b 0.0001]. However, only the AD group sig-
nificantly differed from CN adults [t(126) = 3.9, p b 0.001, Cohen's
d = 1.30]. EMCI and LMCI patients did not display significantly smaller
hippocampal volume compared to the CN group [EMCI: t(126) b 1.0,
p > 0.1, Cohen's d = −0.35; LMCI: t(126) = 1.5, p > 0.1, Cohen's
d = 0.26].
Fig. 1. Four representative CBF images from (A) CN adult, (B) EMCI patient, (C) LMCI p
3.4. Relationship of CBF and hippocampal volume to disease severity

When including the entire cohort with age and education as
covariates, meta-ROI CBF was significantly correlated with CDR SB
(r = − .32, p = 0.001). Similar correlations were observed using hip-
pocampus volume as a predictive variable (hippocampus: r = − .38,
p b 0.001) These correlations showed that lower CBF or smaller volume
was associated with higher CDR SB (greater impairment). Similarly, if
restricted to just symptomatic individuals (EMCI, LMCI, AD), both mea-
sures still correlated with disease severity (CBF: r = − .30, p b 0.05;
hippocampus: r = − .42, p b 0.001). Fig. 3 is a plot of the meta-ROI
CBF vs CDR SB score in the symptomatic patients. Analogous, though
slightly weaker, correlations were found with MMSE.

As the primary cognitive deficit in this population is memory loss,
the above correlations were repeated for the WMS-LM delayed recall.
Across the entire cohort, CBF in the meta-ROI (r = .32, p b 0.001) and
atient, and (D) an AD patient. The display window is from 0 to 100 ml/100 g/min.

image of Fig.�2


Fig. 3. Meta-ROI CBF vs CDR SB score in the symptomatic patients.
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hippocampus (r = .32, p = 0.001) was correlated with this measure.
Similarly, both measures were correlated with delayed recall when re-
stricted to symptomatic patients (CBF: r = .31, p b 0.01; hippocampus:
r = .46, p b 0.001). Perhaps not surprisingly, hippocampal volume
appeared more strongly related to this measure given the role of this
structure in memory function.

To assess whether CBF in the meta-ROI and hippocampal volume
provided independent information regarding disease severity, a hier-
archical regression model was developed in which age and education
were entered in the first step and then CBF and hippocampal volume
were included in a step-wise manner. Across the entire cohort, both
measures (hippocampus: β = − .37, p b 0.001; CBF: β = − .29,
p = 0.001) were included in the model with the highest explanatory
power [F(4,118) = 9.2, p b 0.001]. Both measures were also included in
the samemodel when restricted to symptomatic patients [hippocampus:
β = − .44, p b 0.001; CBF: β = − .27, p b 0.01; F(4,75) = 8.2,
p b 0.001]. Very similar results were found with MMSE as the depen-
dent variable.

Finally, we performed the analogous regression using delayed
recall on the WMS-LM test. Across the entire cohort, both measures
(hippocampus: β = .31, p b 0.01; CBF: β = .30, p = 0.01) were in-
cluded in the model with the highest explanatory power [F(4,118) =
8.7, p b 0.001]. Again, a similar result was found when restricted to
the symptomatic patients (hippocampus: β = .46, p b 0.001; CBF:
β = .28, p b 0.01; F(4,75) = 13.1, p b 0.001). Taken together, these
findings suggest that CBF and hippocampal volume independently
contribute to explanation of disease severity.

4. Discussion

Our results demonstrate the sensitivity of an ASL MRI-based
biomarker to prodromal and early AD in a multisite context. While
the pathoetiology of MCI is heterogeneous, ASL MRI meta-ROI data
appears to track disease severity. Further, group discrimination by
this measure was comparable to hippocampal volume measurement
based on T1-weighted imaging, which is the most well studied neuro-
imaging biomarker in these populations. More importantly, ASL and
structural MRI appeared to provide complementary information with
regard to disease severity, which is an important finding given the ease
of obtaining both of these image types in the same scanning session.

This finding adds to a growing literature suggesting that ASL
MRI is a sensitive biomarker in the spectrum from MCI to early AD
(Alexopoulos et al., 2012; Alsop et al., 2000, 2010; Chao et al., 2009,
2010; Chen et al., 2011; Dai et al., 2009; Hu et al., 2010; Johnson et
al., 2005; Wolk and Detre, 2012; Xu et al., 2007; Yoshiura et al.,
2009). The current study used a meta-ROI summary measure derived
from the FDG PET literature to measure regional CBF (Landau et al.,
2010, 2011). We previously demonstrated in a single-site study that
mean CBF in this set of regions distinguished healthy controls from
AD patients to a similar extent as FDG PET (Chen et al., 2011), and
also significantly differentiated MCI from AD and controls (Zhang et
al., 2012). The sensitivity of this same measure to MCI and AD pa-
tients in the ADNI cohort confirms these prior findings. Notably, a re-
cent study that also included a subset of ADNI participants and
applied the same meta-ROI to FDG PET data produced very similar re-
sults to the current findings (Landau et al., 2012), with little differ-
ence between CN and EMCI groups as found here, but more
apparent hypometabolism in LMCI and AD patients.

To control for the regional specificity of the meta-ROI, we also
examined CBF from an ROI within the visual cortex and didn't find
CBF-disease associations, suggesting that the observed effects are
unlikely to be a consequence of less specific, global CBF effects. In
order to dissociate PVE from CBF, we performed PVE correction before
the cross-sectional data analysis. We observed similar, but slightly
stronger, cross-sectional differences without applying PVE correction
(data not shown here).

Taken together, these data support the notion that ASL MRI pro-
vides largely overlapping findings with FDG PET (Foster et al., 2007;
Jagust et al., 2009, 2010; Silverman et al., 2001). While it is not clear
whether ASL MRI provides additional information in these contexts,
it offers several advantages, including greater accessibility, lower
expense, and lack of invasiveness or exposure to radiation. Moreover,
the current findings demonstrate the potential utility of multi-modality
data for disease monitoring, as CBF and hippocampal volume together
provided the highest explanatory power for disease severity. ASL MRI
can be obtained as a relatively short sequence (~6–8 min) within the
context of a routine MRI, and may obviate the need for an additional
FDG PET scan in many or all patients. This relative performance of ASL
MRI and FDG PET can be further assessed in future analyses of the
ADNI2 cohort.

The current study is limited to data acquired on the Siemens 3T
platform and the number of subjects from each site in our data was
too small to explicitly control for site effects. However we did visually
inspect image quality and did not find perceivable CBF differences
across different sites, as was illustrated in the sample images in Fig. 1.
Although more formal approaches to testing site effects will be needed
in future work, the current data is encouraging. These data, taken in
combination with other single site studies using different platforms
and different ASL acquisition techniques (Binnewijzend et al., 2012;
Okonkwo et al., 2013),suggest that ASL MRI data can be successfully
collected in a neurodegenerative population across multiple platforms
or sites. It is also encouraging that significant effects could be observed
using a commercial sequence (Luh et al., 1999; Wong et al., 1997) lack-
ing advanced features. PASL is known to provide inferior SNR and test–
retest reliability relative to pseudo-continuous ASL (Y. Chen et al., 2010;
Wu et al., 2009); The pseudo-continuous ASL (PCASL) scheme inverts
inflowing blood water over 1–2 s to achieve a higher spin labeling
efficiency and therefore higher SNR for CBF estimation than PASL.
And despite the absence of background suppression (Ye et al., 2000),
over 90% of the acquired data was useable with implementation of ad-
vanced signal processing approaches. This suggests that future studies
employing more advanced ASL methodologies should provide even
greater sensitivity for detecting changes in regional brain function.

Given the likely heterogeneity in underlying etiology of MCI, par-
ticularly EMCI patients in our data, interpretation of group differences
or the lack of a difference (CN versus EMCI) is limited with regard to
the sensitivity and specificity of detection for prodromal AD. Further,
correlation with disease severity is also non-ideal in this analysis as
the potential for group effects and relative proportion of the presence
of AD could influence findings. Longitudinal data, as well as compar-
ison with molecular measures of AD (e.g. amyloid imaging), will be

image of Fig.�3
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revealing for determining the predictive value of this modality on an
individual case level and longitudinal scanning will give better
indication of the sensitivity of this modality to track disease progres-
sion. Finally, even with the data cleaning strategies employed, some
participants did not have adequate quality ASL data to be included
in the analysis. In nearly all cases, we suspect that poor data had been
degraded by motion. While not a significant proportion of patients, in
the context of a clinical trial, this could be problematic and remediative
strategies, such as a second acquisition within each scanning session,
could be pursued.

It is important to put the current ASL MRI findings in the context
of other biomarker studies and current models of the relationship of
these markers with disease stage. One influential conceptualization
is that biomarkers of AD can be divided into those that are sensitive
to cerebral Aβ-plaque deposition (e.g. amyloid imaging, CSF Aβ) and
those that are sensitive to neuronal dysfunction and injury (e.g. FDG
PET, structural MRI, CSF total tau/phosphorylated tau) (Albert et al.,
2011; Jack et al., 2010, 2013a). While not without some degree of con-
troversy, it has become generally accepted that amyloid-basedmarkers
become abnormal first, likely prior to symptom onset, reflecting the
antecedent role of amyloid accumulation in the disease course. Both
in theory andwith some support in the literature, alterations in amyloid
are then followed by evidence of neurodegeneration (Buchhave et al.,
2012; Jack et al., 2011; Landau et al., 2012). Some work has suggested
that the functional changes detected by FDG PET may precede those
of atrophy revealed by structural imaging and are potentially more
accurate in prediction of dementia from MCI (Landau et al., 2010;
Mosconi et al., 2006), but other work has found abnormalities in these
measures suggest that they may occur in a more parallel fashion
(Bateman et al., 2012). In general, neurodegenerative biomarkers ap-
pear more sensitive to disease status in prodromal and symptomatic
stages of disease, as amyloid may plateau prior to these stages (Jack et
al., 2009, 2013b; Vemuri et al., 2010).

It is likely that ASL MRI will provide similar information to FDG
PET. Indeed, as noted above, a recent FDG PET study in a partially
overlapping subset of the ADNI data produced comparable findings
with regard to the group effects observed here (Landau et al., 2012).
However, it is certainly possible that there may be some discordance
between CBF and metabolism, as has been reported in the hippocam-
pus (Alsop et al., 2008; Dai et al., 2009), and that these measures may
prove differentially sensitive to different disease stages. Some work,
including the current findings, support the notion that AD biomarkers
are likely to be complementary for determining both disease etiology
and stage (Jack et al., 2009; Landau et al., 2012). ADNI offers a unique
opportunity to compare the sensitivity of most of the major neuroimag-
ing and biofluid measures, as well as more novel ones, for the diagnosis
and disease tracking. Much more work will be needed to determine
where ASL MRI will fit into the cascade of biomarker abnormality
through the duration of the disease from preclinical to severe dementia.
The relative timing, sensitivity, and dynamic range of these various mea-
sureswill ultimately determine their role in clinical research andpractice.

In conclusion, the current data support the sensitivity of ASL MRI to
prodromal and early AD CBF alterations in the context of a multi-site
study using a commercial ASL sequence. Further, thismodality in combi-
nationwith structuralmarkers of atrophy, which can be obtainedwithin
the same scanning session, appeared to predict disease severity in a
complementary manner, supporting the notion that multi-modality
approaches may be most useful for tracking disease progression.
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